Matrix Protein 2 Vaccination and Protection against Influenza Viruses, Including Subtype H5N1
نویسندگان
چکیده
Changes in influenza viruses require regular reformulation of strain-specific influenza vaccines. Vaccines based on conserved antigens provide broader protection. Influenza matrix protein 2 (M2) is highly conserved across influenza A subtypes. To evaluate its efficacy as a vaccine candidate, we vaccinated mice with M2 peptide of a widely shared consensus sequence. This vaccination induced antibodies that cross-reacted with divergent M2 peptide from an H5N1 subtype. A DNA vaccine expressing full-length consensus-sequence M2 (M2-DNA) induced M2-specific antibody responses and protected against challenge with lethal influenza. Mice primed with M2-DNA and then boosted with recombinant adenovirus expressing M2 (M2-Ad) had enhanced antibody responses that crossreacted with human and avian M2 sequences and produced T-cell responses. This M2 prime-boost vaccination conferred broad protection against challenge with lethal influenza A, including an H5N1 strain. Vaccination with M2, with key sequences represented, may provide broad protection against influenza A.
منابع مشابه
Healthy human subjects have CD4+ T cells directed against H5N1 influenza virus.
It is commonly perceived that the human immune system is naive to the newly emerged H5N1 virus. In contrast, most adults have been exposed to influenza A H1N1 and H3N2 viruses through vaccination or infection. Adults born before 1968 have likely been exposed to H2N2 viruses. We hypothesized that CD4(+) T cells generated in response to H1N1, H3N2, and H2N2 influenza A viruses also recognize H5N1...
متن کاملVaccination against Human Influenza A/H3N2 Virus Prevents the Induction of Heterosubtypic Immunity against Lethal Infection with Avian Influenza A/H5N1 Virus
Annual vaccination against seasonal influenza viruses is recommended for certain individuals that have a high risk for complications resulting from infection with these viruses. Recently it was recommended in a number of countries including the USA to vaccinate all healthy children between 6 and 59 months of age as well. However, vaccination of immunologically naïve subjects against seasonal in...
متن کاملMatrix‐M adjuvanted virosomal H5N1 vaccine confers protection against lethal viral challenge in a murine model
BACKGROUND A candidate pandemic influenza H5N1 vaccine should provide rapid and long-lasting immunity against antigenically drifted viruses. As H5N1 viruses are poorly immunogenic, this may require a combination of immune potentiating strategies. An attractive approach is combining the intrinsic immunogenicity of virosomes with another promising adjuvant to further boost the immune response. As...
متن کاملPerspective of Influenza Research in Korea NIH
influenza virus (HPAIV) strain H5N1 has resulted in serious economic losses to the poultry industry, many countries including Vietnam have introduced mass vaccination of poultry with H5N1 virus vaccines. We found that eggs obtained from chicken farms and supermarkets in Vietnam contain H5N1-specific immunoglobulins (IgY) that provide protection against infections with HPAIV H5N1 and related H5N...
متن کاملProtection against Multiple Influenza A Virus Strains Induced by Candidate Recombinant Vaccine Based on Heterologous M2e Peptides Linked to Flagellin
Matrix 2 protein ectodomain (M2e) is considered a promising candidate for a broadly protective influenza vaccine. M2e-based vaccines against human influenza A provide only partial protection against avian influenza viruses because of differences in the M2e sequences. In this work, we evaluated the possibility of obtaining equal protection and immune response by using recombinant protein on the ...
متن کامل